# Theoretical Studies on the Structure, Thermochemistry, Vibrational Spectroscopy, and Other Features of $HfX_6^{2-}$ (X = F, Cl, Br, I). Electrostatic Energy in Hexahalogenohafnates

# Maciej Gutowski, Janusz Rak, Paweł Dokurno, and Jerzy Błażejowski\*

Departments of Chemistry, University of Gdańsk, 80-952 Gdańsk, Poland, and University of Utah, Salt Lake City, Utah 84112

Received October 21, 1993<sup>®</sup>

Bond lengths in octahedral  $HfX_6^{2-}$  (X = F, Cl, Br, I) were optimized at the ab initio Hartree-Fock SCF level using all-electron MIDI (X = Cl) and effective core potential valence basis sets of double- $\zeta$  quality, supplemented with diffuse functions. Energies resulting from these calculations were combined with energies of  $X_2$  (at optimal geometries) and Hf in order to obtain energies of formation of  $HfX_6^{2-}$ . The effects of electron correlation were taken into account at the second-order Møller-Plesset level of theory. Vibrational frequencies were determined in the harmonic approximation and compared with available experimental data. Common routines were employed to evaluate entropies, heat capacities, heats of formation, and free enthalpies of formation of gaseous  $HfX_6^{2-}$  in the standard state. Electrostatic cohesive energies for hexahalogenohafnates were evaluated by the Ewald method adapted to complex ions. It was assumed for this purpose that the formal charge of each ion is a whole multiple of e. Net atomic charges in complex anions were found either from various population analyses or by fits to the ab initio quantum mechanical electrostatic potential. The Coulombic energies are inversely dependent on the volume of the simplest structural unit and distance between interacting centers (Hf-cation). Theoretically determined properties are in good agreement with available data, mostly of experimental origin.

#### Introduction

Continuous progress in the development of theoretical methods and capabilities of computational devices enables prediction of the structure, energetics, reactivity, and physicochemical features of various chemical entities existing in the gaseous phase.<sup>1-3</sup> This theoretical approach is not easily transferable to condensed phases, where numerous weak pairwise and nonadditive interactions occur for which it is difficult to formulate a quantitive model. $^{4-7}$  The problem is relatively simple in the case of crystalline ionic solids, which attain perfect constitution. In such phases, the crystal lattice (cohesive) energy is dominated by the electrostatic contribution, which is amenable to theoretical calculations.<sup>8-11</sup> This paper touches on the problem of the evaluation of the electrostatic part of the lattice energy in the case of ionic substances containing  $HfX_6^{2-}$  ions.

Crystal lattice energy is generally described as the amount of energy which has to be supplied to transfer ions (or other entities) from the lattice to the gaseous phase, where they do not interact with each other.<sup>11,12</sup> Knowledge of the enthalpies of formation of gaseous ions and crystalline substances therefore enables determination of their lattice energies following Hess's

\* To whom correspondence should be addressed at the University of Gdańsk.

- <sup>®</sup> Abstract published in Advance ACS Abstracts, October 1, 1994.
- (1) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
- (2) Fogarasi, G.; Zhou, X.; Taylor, P. W.; Pulay, P. J. Am Chem. Soc. 1992, 114, 8191.
- (3) Fan, L.; Ziegler, T. J. Am. Chem. Soc. 1992, 114, 10890.
- Kim, S.; John, M. S.; Sheraga, H. A. J. Phys. Chem. 1988, 92, 7216.
- (5) Freeman, C. M.; Catlow, C. R. A. J. Chem. Soc., Chem. Commun. 1992.89
- (6) Gavezzotti, A.; Filippini, G. Acta Crystallogr., Sect. B 1992, B48, 537.
- (7) Dronskowski, R. J. Am. Chem. Soc. 1992, 114, 7230.
  (8) Tosi, M. P. Solid State Phys. 1964, 16, 1.
- (9) Jenkins, H. D. B.; Pratt, K. F. Adv. Inorg. Chem. Radiochem. 1979, 22 1
- (10) Williams, D. E. Top. Curr. Phys. 1981, 26, 3.
- (11) Blazejowski, J.; Lubkowski, J. J. Therm. Anal. 1992, 38, 2195.
- (12) Atkins, P. W. Physical Chemistry, 3rd ed.; W. H. Freeman: New York, 1986.

law. Similarly, the combination of lattice energies with enthalpies of formation of ions affords the enthalpies of formation of solid phases. Heats of formation of solid substances have so far been determined only experimentally.<sup>13,14</sup> For solid hexahalogenohafnates such thermochemical data are rather scattered and fragmentary.<sup>15</sup> Heats of formation of numerous monoatomic or complex organic base cations have been determined experimentally and are commonly available.<sup>16,17</sup> In the case of the latter species, heats of formation can also be obtained by employing quantum chemistry methods.<sup>1,18,19</sup> Unfortunately, only heats of formation of simple anions can be measured and are available in the literature.<sup>13</sup> There are also known heats of formation of several  $MX_6^{2-}$  ions (M = metal(IV)). Values of these quantities have, however, been assessed on the basis of the thermochemical cycle and lattice energies obtained theoretically for salts containing the aforementioned ions.<sup>9</sup> To our knowledge, except for our recent report on  $ZrX_6^{2-2}$ , no advanced theoretical studies on these complex octahedral species have so far been undertaken. We therefore employed ab initio quantum chemistry methods to obtain information on the structure, thermodynamics, vibrational transitions, and net charges of atoms in  $HfX_6^{2-}$  ions.

Hafnium tetrahalides and hexahalogenohafnates are two of the simplest and best known derivatives of hafnium.<sup>21</sup> They play an important role in purifying and separating this element

- (13) Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. J. Phys. Chem. Ref. Data 1982, 11, Suppl. No. 2.
- (14) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman and Hall: London, 1986.
- (15) Gruzdiewa, L.; Rak, J.; Blazejowski, J. J. Alloy Compd. 1994, 210,
- (16) Handbook of Chemistry and Physics, 67th ed.; CRC Press: Boca Raton, FL, 1986-1987.
- (17) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R.
- D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. No. 1. (18) Dewar, M. J. S.; Dieter, K. M. J. Am. Chem. Soc. 1986, 108, 8075.
- (19) Ozment, J. L.; Schmiedekamp, A. M. Int. J. Quantum Chem. 1992, 43, 783.
- (20) Rak, J.; Gutowski, M.; Dokurno, P.; Vu Thanh, H.; Blazejowski, J. J. Chem. Phys. 1994, 100, 5810.
- (21) Larsen, E. M. Adv. Inorg. Chem. Radiochem. 1970, 13, 1.

© 1994 American Chemical Society

from others.<sup>22</sup> Owing to the high symmetry ( $T_d$  for MX<sub>4</sub> and  $O_h$  for MX<sub>6</sub><sup>2-</sup>) and the closed-shell electronic structure of these species, they are frequently considered as models of coordinated compounds. These reasons prompted us to undertake studies on hexahalogenohafnates. Moreover, solid phase structures of several salts containing these dianions are known; therefore, relations between lattice energy and constitution, as well as structural parameters of the salts, can be revealed.

To determine the lattice energy, we explored several approaches to obtain charges localized on atoms. Particular attention has been given to charges which reproduce the ab initio electrostatic potential,<sup>23,24</sup> since certain physical meanings can be ascribed to them. This constitutes progress in comparison with our earlier studies, in which net atomic charges were obtained from the population analysis of semiempirical wave functions.<sup>25–27</sup> We believe that the approach adopted in this work constitutes a more reliable basis for examination of the interionic interactions in complex ionic substances.

#### Methods

Geometry and Force Field Calculations. Bond lengths in HfX<sub>6</sub><sup>2-</sup> at constrained  $O_h$  symmetry were determined at the Hartree-Fock level of the theory (HF) by employing Baker's optimization procedure<sup>28</sup> together with the relativistic compact effective core potentials of Stevens et al.<sup>29,30</sup> and their valence, energy-optimized, shared-exponents, contracted-Gaussian basis sets, which we labeled SBKJ. For the Hf atom, 60 electrons were incorporated into pseudopotential and the double- $\zeta$  quality s, p basis sets and triple- $\zeta$  quality d basis sets were used to model the chemically active 5s, 5p, 6s, 6p, and 5d orbitals. For X atoms, the valence ns and np orbitals with the double- $\zeta$  quality basis sets were considered. Calculations with the all-electron MIDI basis set<sup>31</sup> were restricted to the  $HfCl_6^{2-}$  ion only due to the fact that the GAMESS program package used<sup>32</sup> did not enable gradient optimization in the case of basis sets involving f symmetry functions (for Hf) and nongradient optimization followed by Hessian evaluation was very time consuming.

Validity of the geometry optimization procedure was tested in the subsequent Hessian (second derivatives of the energy as a function of nuclear coordinates) calculations followed by the normal-mode analyses. In the HF/SBKJ calculations all positive curvatures were found at the  $O_h$  symmetry stationary points, which confirms that minima on the potential energy surfaces were actually located. At this level of theory, vibrational frequencies in the harmonic approximation were also determined.<sup>33</sup>

To improve the quality of ab initio calculations, the SBKJ basis sets were augmented with diffuse functions.<sup>1</sup> For X, one extra set of L(sp)

- (22) Kipouros, G. J.; Flint, J. H.; Sadoway, D. R. Inorg. Chem. 1985, 24, 3881.
- (23) Bonati, L.; Consentino, U.; Fraschini, E.; Moro, G.; Pitea, D. J Comput. Chem. **1992**, *13*, 842.
- (24) Reynolds, C. A.; Essex, J. W.; Richards, W. G. J. Am. Chem. Soc. 1992, 114, 9075.
- (25) Dokurno, P.; Lubkowski, J.; Czerminski, J.; Blazejowski, J. Aust. J. Chem. 1991, 44, 779.
- (26) Dokurno, P.; Lubkowski, J.; Blazejowski, J. Pol. J. Chem. 1992, 66, 2047.
- (27) Dokurno, P.; Lubkowski, J.; Blazejowski, J. J. Phys. Chem. 1993, 97, 2715.
- (28) Baker, J. J. Comput. Chem. 1986, 7, 385.
- (29) Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026.
- (30) Krauss, M.; Stevens, W. J.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612.
- (31) Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984.
- (32) Dupuis, M.; Spangler, D.; Wendoloski, J. J. National Resource for Computations in Chemistry Software Catalog; University of California: Berkeley, CA, 1980; Program QG01. Current version: Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki, S.; Gordon, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. QCPE Bull. 1990, 10, 52.
- (33) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; Dover Publications: New York, 1955.

functions was added whereas, for Hf, two, one L(sp) and one d, diffuse sets were used. For every symmetry, the exponent of the diffuse basis function was equal to one-third of the lowest exponent in the original basis. The influence of the diffuse functions on the results of ab initio calculations was thoroughly tested in the case of  $HfCl_6^{2^-}$ . It was found that augmenting the SBKJ basis sets with diffuse functions on (i) X only (SBKJ+d), and (ii) X and Hf (SBKJ+dd), leaves the geometry unaffected and influences only slightly the energy and the free enthalpy of formation of this species. To unify the results, mostly single-point HF calculations were performed with the SBKJ+dd basis sets at the geometries optimal for the SBKJ basis sets (relevant information is referred to as HF/SBKJ+ddlIHF/SBKJ, where "IP" means "at the geometry of").

All the quantum mechanical calculations were carried out on a Hewlett-Packard 730 Apollo workstation employing the GAMESS (General Atomic and Molecular Electronic Structure System) program package.<sup>32</sup>

**Thermodynamic Quantities.** The energies of formation of  $HfX_6^{2-}$ ( $\Delta E_f$ ) were determined by following Hess's law, i.e., by subtracting from the energy of gaseous  $HfX_6^{2-}$  the energies of gaseous  $X_2$  (three times) and Hf in the lowest electronic state (RHF energy at the SCF level or UHF+MP2 energy at the MP2 level). Values of  $\Delta E_f$  were not corrected for the zero-point vibrational energy. As thermodynamic properties may be markedly affected by the electron correlation effects,<sup>1</sup> the HF results were supplemented with the second-order Møller-Plesset (MP2) electron correlation correction<sup>34</sup> calculated for the SBKJ basis set (relevant values are referred to as e.g. MP2/SBKJ+ddllHF/SBKJ).

The enthalpies  $(\Delta H_{t,298})$  and free enthalpies  $(\Delta G_{t,298})$  of formation of HfX<sub>6</sub><sup>2-</sup> were evaluated analogously to  $\Delta E_t$ .<sup>35</sup> For this purpose routines incorporated in GAMESS,<sup>32</sup> employing statistical thermodynamics, were used to determine entropies ( $S_{298}$ ) and heat capacities ( $C_{\rho,298}$ ), as well as enthalpies and free enthalpies of species relative to their ab initio energies. Such values correspond to the gaseous state of all entities at a pressure of 1 atm. To bring  $\Delta H_{t,298}$  values to the standard conditions in the usual sense (relevant information is referred to as e.g.  $\Delta H^{\circ}_{t,298}$ ), the ab initio energies of Hf, Br<sub>2</sub>, and I<sub>2</sub> were lowered by (in kJ/mol) 611 (enthalpy of atomization<sup>36</sup>), 31 (enthalpy of vaporization<sup>16</sup>), and 62 (enthalpy of sublimation<sup>16</sup>), respectively. To obtain free enthalpies of formation under the standard conditions, the theoretically determined entropies of Hf, Br<sub>2</sub>, and I<sub>2</sub> were lowered by (in J/(mol K)) 143.3, 93.1 and 144.5, i.e., the differences in entropy of the species in gaseous and standard states, respectively.<sup>16</sup>

Net Atomic Charges. Net atomic charges in  $HfX_6^{2-}$  were initially evaluated on the basis of the Mulliken,<sup>37</sup> Löwdin,<sup>38</sup> and Stone<sup>39</sup> population schemes. Data thus obtained demonstrated strong dependence on the choice of the basis sets used. Therefore, we determined charges fitted so as to reproduce the ab initio molecular electrostatic potential (MEP charges).<sup>24</sup> For this purpose, the procedure incorporated in MOPAC 6.0 was employed.<sup>40</sup> First, the optimal  $HfX_6^{2-}$  (at the HF/ SBKJ level) geometries were introduced into MOPAC in order to generate a grid of about 500 points, which results from the conventionalspace-filling model (CPK).<sup>40</sup> The CPK surfaces were obtained by scaling the atomic van der Waals radii<sup>41</sup> with the factor ranging from 1 to 7. The grid for each shell was then transferred to GAMESS<sup>32</sup> to calculate MEP with the SBKJ+dd wave functions. Thus-determined electrostatic potentials were again transferred to MOPAC to fit the charges.

Lattice Energetics. (1) General Problems. Crystal lattice energy  $(E_c)$  reflects the magnitude of intermolecular interactions (cohesive forces) keeping molecules in the rigid solid phase. In thermodynamics, the lattice energy of an ionic substance of a general formula  $K_m A_n$ 

- (34) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
- (35) Pople, J. A.; Luke, B. T.; Frisch, M. J.; Binkley, J. S. J. Phys. Chem. 1985, 89, 2198.
- (36) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, U.K., 1990; Chapter 21.
- (37) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833, 1841.
- (38) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
- (39) Stone, A. J. Chem. Phys. Lett. 1981, 83, 233.
- (40) Stewart, J. J. P. J. Comput.-Aided Mol. Design. 1990, 4, 1.
- (41) Bondi, A. J. Phys. Chem. 1964, 68, 441.

Table 1. Structural Data for Hexahalogenohafnates

| substance  |                                                                 |                            |               |       |                  |                        |            |
|------------|-----------------------------------------------------------------|----------------------------|---------------|-------|------------------|------------------------|------------|
| no.        | formula                                                         | name of cation (amine)     | space group   | $Z^a$ | $V/Z (Å^3)^b$    | Hf–cation (N) dist (Å) | ref        |
| 1a         | K <sub>2</sub> HfF <sub>6</sub>                                 | potassium                  | Cmcm          | 4     | 129              | 3.76                   | 45         |
| 1b         |                                                                 | -                          | C2/c          | 4     | 131              | 3.80                   | 46         |
| 2          | $Rb_2HfF_6$                                                     | rubidium                   | P <u>3</u> m1 | 1     | 157              | 3.84                   | 45         |
| 3          | Cs <sub>2</sub> HfF <sub>6</sub>                                | cesium                     | P3m1          | 1     | 177              | 3.99                   | 45         |
| <b>4</b> a | CuHfF <sub>6</sub>                                              | cupric                     | Fm3m          | 4     | 124              | 3.96                   | 47, 48     |
| 4b         |                                                                 | -                          | RĪ            | 3     | 121              | 3.92                   | 47, 48     |
| 5          | CaHfF <sub>6</sub>                                              | calcium                    | Fm3m          | 4     | 151              | 4.23                   | 49         |
| 6          | ZnHfF <sub>6</sub>                                              | zinc                       | RĪ            | 3     | 121              | 3.93                   | 47, 50     |
| 7a         | MnHfF <sub>6</sub>                                              | manganous                  | Fm3m          | 4     | 136              | 4.08                   | 47, 48, 50 |
| 7b         |                                                                 | -                          | R3            | 3     | 136              | 4.08                   | 48, 50     |
| 8a         | FeHfF <sub>6</sub>                                              | ferrous                    | Fm3m          | 4     | 132              | 4.04                   | 47, 48, 50 |
| 8b         |                                                                 |                            | RĨ            | 3     | 132              | 4.04                   | 48, 50     |
| 9a         | CoHfF <sub>6</sub>                                              | cobaltous                  | Fm3m          | 4     | 128              | 4.00                   | 47, 48     |
| 9b         |                                                                 |                            | RĪ            | 3     | 123              | 3.95                   | 47, 48, 50 |
| 10a        | NiHfF <sub>6</sub>                                              | nickel                     | Fm3m          | 4     | 124              | 3.96                   | 47, 48     |
| 10b        |                                                                 |                            | R3            | 3     | 117              | 3.89                   | 47, 48, 50 |
| 11         | K₂HfCl <sub>6</sub>                                             | potassium                  | Fm3m          | 4     | 255              | 4.36                   | 9, 51      |
| 12         | Cs <sub>2</sub> HfCl <sub>6</sub>                               | cesium                     | Fm3m          | 4     | 283              | 4.51                   | 9, 52      |
| 13         | Bi <sub>10</sub> (HfCl <sub>6</sub> ) <sub>3</sub> <sup>c</sup> |                            | P63/m         | 2     | 893 <sup>d</sup> |                        | 53         |
| 14         | $[N(C_2H_5)_4]_2HfCl_6$                                         | N,N,N-triethylethanaminium | C2/c          | 4     | 672              | 5.91; 5.99             | 54         |
| 15         | $K_2HfBr_6$                                                     | potassium                  | Fm3m          | 4     | 296              | 5.29                   | 55         |
| 16         | Cs <sub>2</sub> HfBr <sub>6</sub>                               | cesium                     | Fm3m          | 4     | 325              | 5.46                   | 55         |
| 17         | Li₂HfL₀                                                         | lithium                    | Fm3m          | 4     | 303              | 4.78                   | 56, 57     |
| 18         | Cs <sub>2</sub> HfI <sub>6</sub>                                | cesium                     | Fm3m          | 4     | 391              | 5.81                   | 57, 58     |

<sup>a</sup> Number of structural units in unit cell. <sup>b</sup> Ratio of volume of unit cell to number of structural units in the cell. <sup>c</sup> The constitution of the compound can be considered as Bi<sup>+</sup>Bi<sub>9</sub><sup>5+</sup>(HfCl<sub>6</sub>)<sub>3</sub>. <sup>d</sup> Value represents one-third of the volume of the Bi<sub>10</sub>(HfCl<sub>6</sub>)<sub>3</sub> stoichiometric unit.

expresses the energy change for the process<sup>12</sup>

$$K_m A_n(c) \rightarrow m K^{\alpha n+}(g) + n A^{\alpha m-}(g)$$
(1)

where  $\alpha$  is the multiplicator indicating the valence of both ions. It is generally recognized that four effects influence  $E_c$ ,<sup>11</sup> namely

$$E_{\rm c} = -E_{\rm el} + E_{\rm r} - E_{\rm d} + E_0 \tag{2}$$

where  $E_{el}$  represents the electrostatic (Coulombic) interactions between ions,  $E_{\rm r}$  the repulsive interactions (occurring due to the intervention of the Pauli exclusion principle),  $E_d$  the dispersive interactions, and  $E_0$ the zero-point energy of the crystal.  $-E_{el}$  and  $-E_{d}$  stabilize whereas  $E_{\rm r}$  and  $E_0$  destabilize the lattice. However, individual terms do not contribute to  $E_c$  equally. The data for several ionic systems revealed that  $E_r$  and  $E_d$  possessed similar values (usually not exceeding  $\frac{1}{10}E_{el}$ ) and an opposite sign and that  $E_0$  was negligible.<sup>9,11,42</sup> The conclusion is that  $-E_{el}$  alone well approximates the crystal lattice energy of ionic substances. Therefore, in this study we have restricted calculations to this term.

(2) Use of the Ewald Method. The electrostatic energy of 1 mol of an ionic substance composed of  $(K^{\alpha n^+})_m (A^{\alpha m^-})_n$  units is given by the equation<sup>12</sup>

$$E_{\rm el} = \frac{1}{2} N_{\rm A} [m(\alpha n +) e V_{\rm p}^{\alpha n +} + n(\alpha m -) e V_{\rm p}^{\alpha m -}] \qquad (3)$$

where  $N_A$  is the Avogadro number, e the elementary charge, and  $V_p$ the potential created at the site of location of a given ion by all other ions in the lattice, while the factor 1/2 eliminates the duplication of electrostatic interactions. The problem of evaluating the electrostatic energy boils down, therefore, to the determination of lattice potentials. We used the Ewald method for this purpose,43 the details of which are given, among others, in refs 8 and 11.

Compounds examined in this work always contain molecular ions, while the Ewald method was originally developed to calculate the electrostatic potential in crystals made up of monoatomic ions. The application of the Ewald method to systems examined in this work requires, therefore, certain assumptions:<sup>20</sup> (i) in the lattice, species constituting the simplest stoichiometric unit to which energy is referred are distinguished; (ii) in each such unit, positive and negative fragments (ions) are distinguished; (iii) to each fragment are ascribed charges which are whole multiples of e; (iv) within each such fragment, a charge is distributed between all atoms forming the fragment or is placed on certain chosen atoms; (v) each partial charge contributes to the electrostatic potential (i.e., is considered independently in calculations); (vi) the electrostatic potential is determined at the sites of the location of each partial charge (atom) of a given fragment and partial charges ascribed to the remaining atoms forming this fragment are neglected.

Crystal lattice energies were calculated by using a computer program based on the principles of the Ewald method which included the above mentioned assumptions.

(3) Structural Information. Electrostatic energy calculations can be carried out if location of charges in the lattice is known, i.e. for systems whose crystal structures are established. A search of Chemical Abstracts and the Cambridge Structural Database44 revealed that actually structures of 17 hexahalogenohafnates were sufficiently refined to be considered in the lattice energy calculations (Table 1). For several cubic salts (Fm3m space group), only the locations of Hf and metal cations have been established. In such cases, halogen atoms were placed at distances predicted theoretically (Table 2), preserving the symmetry typical for this type of structure. The structure of N,N,Ntriethylethanaminium hexachlorohafnate appeared incomplete, since two

- (42) de Jonge, R. M. J. Inorg. Nucl. Chem. 1976, 38, 1821.
- (43) Ewald, P. P. Ann. Phys. 1921, 64, 253.
- (44) Allen, F. H.; Kennard, O.; Taylor, R. Acc. Chem. Res. 1983, 16, 146.
- (45) Bode, H.; Teufer, G. Z. Anorg. Allg. Chem. 1956, 283, 18.
- (46) Neumann, C.; Saalfeld, H.; Gerdau, E.; Guse, W. Z. Kristallogr. 1986, 175, 159.
- (47) Steffens, F.; Reinen, D. Z. Naturforsch. 1976, 31B, 894.
  (48) Reinen, D.; Steffens, F. Z. Anorg. Allg. Chem. 1978, 441, 63.
- (49) Keller, C.; Salzer, M. J. Inorg. Nucl. Chem. 1967, 29, 2925.
- (50) Davidovich, R. L.; Levchina, T. F.; Ivanov, S. B. Izv. Akad. Nauk
- SSSR, Neorg. Mater. 1975, 11, 2180. (51) Gelbman, P.; Westland, A. D. J. Chem. Soc., Dalton Trans. 1975, 1598.
- (52) Maniv, S. J. Appl. Crystallogr. 1976, 9, 245.
  (53) Friedman, R. M.; Corbett, J. D. Inorg. Chem. 1973, 12, 1134.
- (54) Ruhlandt-Senge, K.; Bacher, A.-D.; Mueller, U. Acta Crystallogr., Sect. C 1990, C46, 1925.
- (55) Makhija, R.; Westland, A. D. J. Chem. Soc., Dalton Trans. 1977, 1707.
- (56) Mukhametshina, V. V.; Parakhin, V. P.; Chekmarev, A. M. Zh. Neorg. Khim. 1986, 31, 2187.
- Kravchenko, E. A.; Morgunov, V. G.; Mukhametshina, Z. B.; Chibrikin, V. V.; Yagodin, G. A. Z. Naturforsch. **1986**, 41A, 294.
- (58) Sinram, D.; Brendel, C.; Krebs, B. Inorg. Chim. Acta 1982, 64, L131.

| Table 2. | Thermochemical | and | Structural | Characteristics | of | HfX <sub>6</sub> <sup>2</sup> |
|----------|----------------|-----|------------|-----------------|----|-------------------------------|
|----------|----------------|-----|------------|-----------------|----|-------------------------------|

|                                 |                                                               | thermochemical data <sup>a</sup> |                                      |                                           |        |                     | Hf-X bond length <sup>a</sup> |            |
|---------------------------------|---------------------------------------------------------------|----------------------------------|--------------------------------------|-------------------------------------------|--------|---------------------|-------------------------------|------------|
| species                         | basis setllgeometry                                           | $\Delta E_{\rm f}$               | $\Delta H^{\circ}_{\rm f,298}^{b,c}$ | $\Delta G^{\circ}_{\mathrm{f},298}{}^{b}$ | S° 298 | $C_p^{\circ}_{298}$ | this work                     | lit. (ref) |
| HfF <sub>6</sub> <sup>2–</sup>  | HF/SBKJIHF/SBKJ                                               | -3054                            | -2441                                | -2372                                     | 402.0  | 134.9               | 2.035                         | 2.04 (46)  |
|                                 | MP2/SBKJ+ddlHF/SBKJ                                           | -3184                            | -2571                                | -2502                                     |        |                     |                               |            |
| HfCl <sub>6</sub> <sup>2-</sup> | HF/SBKJI HF/SBKJ<br>MP2/SBKJI HF/SBKJ<br>MP2/SBK1+d HF/SBKI   | -2144<br>-2198<br>-2209          | -1527<br>-1581<br>-1592              | -1459<br>-1513<br>-1524                   | 474.9  | 149.6               | 2.547                         | 2.574 (52) |
|                                 | MP2/SBKJ+dl/HF/SBKJ+d<br>MP2/SBKJ+ddl/HF/SBKJ                 | -2209<br>-2210                   | -1592<br>-1593                       | -1524<br>-1525                            |        |                     | 2.548                         |            |
|                                 | MP2/SBKJ+ddllHF/SBKJ+dd<br>HF/MID1  HF/MIDI                   | -2210<br>-2016                   | -1593                                | -1525                                     |        |                     | 2.548<br>2.526                |            |
| HfBr <sub>6</sub> <sup>2–</sup> | HF/SBKJ  HF/SBKJ<br>MP2/SBKJ  HF/SBKJ<br>MP2/SBKJ+dd  HF/SBKJ | 1819<br>1907<br>1921             | -1108<br>-1196<br>- <i>1210</i>      | -1124<br>-1212<br>- <i>1226</i>           | 544.6  | 154.3               | 2.715                         |            |
| HfI <sub>6</sub> ²−             | HF/SBKJI HF/SBKJ<br>MP2/SBKJ  HF/SBKJ<br>MP2/SBKJ+dd  HF/SBKJ | -1510<br>-1664<br>-1676          | -706<br>-860<br>-872                 | 769<br>923<br>935                         | 592.1  | 155.8               | 2.961                         | 2.829 (58) |

 $^{a}\Delta E_{f}, \Delta H^{\circ}_{f,298}$ , and  $\Delta G^{\circ}_{f,298}$  in kJ/mol;  $S^{\circ}_{298}$  and  $C_{\rho}^{\circ}_{298}$  in J/(mol K); bond lengths in Å. <sup>b</sup> Italic values can be considered to be the most reliable. <sup>c</sup> Literature values of the enthalpy of formation (in kJ/mol): HfCl<sub>6</sub><sup>2-</sup>, -1626<sup>15</sup> and -1640;<sup>9</sup> HfBr<sub>6</sub><sup>2-</sup>, -1275;<sup>15</sup> Hfl<sub>6</sub><sup>2-</sup>, -878.<sup>15</sup>

ethyl substituents were disordered.<sup>54</sup> In the latter case, the lattice energy calculations could be carried out by considering the location of the N atom only.

### **Results and Discussion**

Structure, Features, and Thermochemistry of  $HfX_6^{2-}$ . Because ab initio methods require time-consuming calculations, we chose the  $HfCl_6^{2-}$  ion as a model system for (i) examining the effect of the one-electron basis set saturation and (ii) determining the extent to which the geometry of this entity changes at various levels of the theoretical approach. This is the reason for presenting the most detailed information regarding this ion in Table 2.

The length of the Hf–Cl bond in  $HfCl_6^{2-}$  predicted at the HF/MIDI level is slightly shorter than that obtained at the HF/SBKJ level (Table 2), although the latter compares better with that of the crystal phase. In general, the theoretically predicted Hf–X bond lengths agree quite well with the experimental results, which confirms the soundness of the approach applied.

Supplementing the SBKJ basis sets with diffuse functions on either Cl or Hf changes the Hf–Cl bond length by less than 0.001 Å (Table 2). It thus seemed justifiable to carry out only single-point calculations for all  $HfX_6^{2-}$  complexes, at the optimal HF/SBKJ geometry. Some improvement of geometry and energy predictions would undoubtedly be achieved by inclusion of d diffuse functions on chlorine or halogens in general. Calculations with basis sets so extended were, however, beyond our capability.

The length of the Hf-X bond increases on moving from species containing F to those containing I. This should be accompanied by a decrease in bonding power between constituents, which is, indeed, reflected in the energy, enthalpy, and free enthalpy of formation; the thermodynamic stability decreases on moving from  $HfF_6^{2-}$  to  $HfI_6^{2-}$ .

In all  $HfX_6^{2-}$  ions (X = F, Cl, Br, I), the lowest occupied valence orbitals are of  $a_{1g}$  and  $t_{1u}$  symmetries. Singly degenerated  $a_{1g}$  orbitals are dominated by 5s orbitals, while triply degenerated  $t_{1u}$  orbitals are dominated by 5p orbitals of Hf. The highest occupied molecular orbitals (HOMOs) are of  $t_{1g}$ symmetry and are dominated by *n*p orbitals of halogens. On the other hand, 5p and 6p orbitals of Hf, as well as *n*p orbitals of the halogens, contribute to the triply degenerated  $t_{1u}$  HOMO-1 molecular orbitals. The LUMO orbital of  $HfF_6^{2-}$  is singly degenerated ( $a_{1g}$ ), with the major contribution from 6s of Hf, while LUMO orbitals of  $HfX_6^{2-}$  (X = Cl, Br, I) are triply degenerated ( $t_{2g}$ ) and dominated by 5d orbitals of Hf and *n*p orbitals of the halogens. In general, unoccupied orbitals are dominated by atomic orbitals of Hf.

The usefulness of the ab initio approach is revealed by the fact that it predicts correctly the heats of formation of gaseous  $HfX_6^{2-}$  (Table 2). The value of  $\Delta H^{\circ}_{f,298}[HfCl_6^{2-}(g)]$  obtained in this work, equal to -1593 kJ/mol, is only 47 kJ/mol higher than that available in the literature, which can be considered to be of experimental origin.<sup>9</sup> Supplementing the SBKJ basis set with diffuse functions has almost no effect on the  $\Delta E_f$  values, while adding MP2 corrections substantially improves the values of heats of formation, bringing them closer to those evaluated with the use of experimentally derived data.<sup>15</sup> On the other hand, comparison of  $\Delta E_f$  values indicates that MIDI seems less adequate than the SBKJ basis set when the thermodynamics of complex  $HfX_6^{2-}$  ions are examined.

Entropies, free enthalpies, and heat capacities of  $HfX_6^{2-}$  (Table 2) were, to our knowledge, determined for the first time. The entropies and heat capacities increase on moving from  $HfF_6^{2-}$  to  $HfI_6^{2-}$ , which is predominantly caused by the increase in the density of vibrational states (Table 3).

**Vibrational Spectroscopy of HfX\_6^{2^-}.** Vibrational analysis of  $HfX_6^{2^-}$  afforded six normal modes, namely four triply (t), one doubly (e), and one singly (a) degenerate (Table 3), of which  $v_1$ ,  $v_2$ , and  $v_5$  are Raman active,  $v_3$  and  $v_4$  are infrared active, and  $v_6$  is inactive.<sup>59,61,62</sup> The  $v_1$  and  $v_2$  vibrations are predicted to be almost completely stretching modes and  $v_5$  and  $v_6$  are completely or essentially bending modes, whereas  $v_3$  and  $v_4$  exhibit a complex nature. The latter information does not agree with that reported in the literature.<sup>62</sup>

Frequencies predicted compare quite well with those found in condensed phases (Table 3). Differences may arise as the result of the influence of the countercations. Moreover, in

- (59) Dean, P. A. W.; Evans, D. F. J. Chem. Soc. A 1967, 698.
- (60) Lane, A. P.; Sharp, D. W. A. J. Chem. Soc. A 1969, 2942.
- (61) Brisdon, B. J.; Ozin, G. A.; Walton, R. A. J. Chem. Soc. A 1969, 342.
  (62) Van Bronswyk, W.; Clark, R. J. H.; Maresca, L. Inorg. Chem. 1969, 8, 1395.
- (63) Labonville, P.; Ferraro, J. R.; Wall, M. C.; Basile, L. J. Coord. Chem. Rev. 1972, 7, 257.
- (64) Salyulev, A. B.; Vovkotrub, E. G.; Strekalovskii, V. N. Zh. Neorg. Khim. 1990, 35, 902.
- (65) Mukhametshina, Z. B.; Hobert, H. Z. Chem. 1982, 22, 273.
- (66) Kaganyuk, D. S. Radiokhimiya 1983, 25, 140.

**Table 3.** Calculated Harmonic Frequencies  $(cm^{-1})$  and Intensities  $(D^2/(\mathring{A}^2 amu))$  (in Parentheses) Together with Observed Vibrational Frequencies  $(cm^{-1})$  for  $HfX_6^{2-}$ 

|                                 |                                                                                      | frequency                                              |                                                                                             |  |  |
|---------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| species                         | mode                                                                                 | HF/SBKJ                                                | obsd (ref <sup>a</sup> )                                                                    |  |  |
| HfF <sub>6</sub> <sup>2-</sup>  | $t_{2u}(v_{6}) t_{2g}(v_{5}) t_{1u}(v_{4}) e_{g}(v_{2}) t_{1u}(v_{3}) a_{1g}(v_{1})$ | 126<br>241<br>227 (1.895)<br>462<br>466 (6.292)<br>554 | 230-246 (59) 184-220 (60) 467-471 (60) 478-486 (60) 586-595 (59, 60)                        |  |  |
| HfCl <sub>6</sub> ²−            | $t_{2u}(v_6) t_{2g}(v_5) t_{1u}(v_4) e_g(v_2) t_{1u}(v_3) a_{1g}(v_1)$               | 83<br>146<br>145 (0.636)<br>236<br>263 (4.361)<br>297  | $153-167 (61-63) \\138-150 (61-63) \\237-264 (61-63) \\260-288 (61-64) \\326-333 (61-63)$   |  |  |
| HfBr <sub>6</sub> <sup>2–</sup> | $t_{2u}(v_6) t_{2g}(v_5) t_{1u}(v_4) e_g(v_2) t_{1u}(v_3) a_{1g}(v_1)$               | 54<br>92<br>99 (0.095)<br>140<br>183 (2.992)<br>182    | 101-116 (61-63)<br>102-112 (61-63)<br>142-157 (61-63)<br>189-193 (61-63)<br>197-201 (61-63) |  |  |
| HfI <sub>6</sub> ²−             | $t_{2u}(v_6) t_{2g}(v_5) t_{1u}(v_4) e_g(v_2) t_{1u}(v_3) a_{1g}(v_1)$               | 41<br>68<br>76 (0.014)<br>97<br>146 (2.387)<br>129     | 80-85 (65)<br>145-165 (65)                                                                  |  |  |

<sup>a</sup> All values correspond to the species in condensed phases.

condensed phases, somewhat higher values of frequencies can be expected for  $HfX_6^{2-}$ , due to the possible contraction of their geometry (Table 2). Finally, our results were obtained in the harmonic approximation at the SCF level of theory.

In general, the conformity between calculated and observed vibrational frequencies is reasonably good (Table 3), which implies that the theory foresees the spectral features of octahedral hexahalogenohafnate anions fairly well.

**Charge Distribution between Atoms.** Distribution of the charge in  $HfX_6^{2-}$  depends greatly on the method of its evaluation (Table 4). MEP atomic charges are influenced by the choice of the CPK surface. Figure 1 demonstrates the dependence of the net MEP charge at Hf in  $HfX_6^{2-}$  on the factor scaling the van der Waals atomic radii. As can be noted, charges become stable for a scaling factor greater than 4. Such charges are given in Table 4 and are used in the lattice energy calculations.

In general, the electronic charge is spread throughout the whole molecule (Table 4). The "MEP fit" always predicts the excess of a negative charge at more electronegative halogens and a net *positive* charge on a less electronegative hafnium atom, even though we are dealing with dianions. Unfortunately, results of the Mulliken, Löwdin, and Stone population analyses do not always follow this trend. In several cases, the net charge



Figure 1. MEP net charge on Hf in  $HfF_6^{2-}$  (a),  $HfCl_6^{2-}$  (b),  $HfBr_6^{2-}$  (c), and  $HfI_6^{2-}$  (d) determined at the HF/SBKJ+ddl HF/SBKJ level versus the scaling factor of the van der Waals atomic radii.

on Hf, obtained with the SBKJ basis sets, appeared to be negative (for  $Hfl_6^{2-}$  a value as high as -17.708 was even found). We think, that these nonphysical results may be caused by the unbalanced nature of the basis sets supplemented with diffuse functions. On the other hand, the application of the MIDI basis set (balanced) in the case of  $HfCl_6^{2-}$  (Table 4) and  $ZrX_6^{2-}$  (Table 4 in ref 20) always leads to positive net charges on the central atom, which seems to be realistic and consistent with our general knowledge of this problem. The values obtained with the latter basis set are also closer to the net charges reported in the literature. It might, therefore, be that the MIDI basis set better reflects this feature of complex dianions than SBKJ does.

Lattice Energy of Hexahalogenohafnates. Theoretically determined Coulombic energies of hexahalogenohafnates, together with data available from the literature, are listed in Table 5. Our results for potassium and cesium hexachlorohafnates conform quite well with those reported by others.<sup>9</sup> In addition, we recently evaluated lattice energies for these two and four other compounds following the thermochemical cycle and using (i) enthalpies of formation of gaseous  $HfX_6^{2-}$  determined here, (ii) literature values of heats of formation of relevant cations, and (iii) literature values of heats of formation or thermal decomposition of the salts.<sup>15</sup> The conformity between the explicitly calculated lattice energies (the second column in Table 5) and the results obtained from the thermochemical cycle (the last column in Table 5) strengthens the soundness of the approach applied. Due to the lack of reliable thermochemical data for hexafluorohafnates,<sup>15</sup> it is difficult to judge the quality of values of lattice energy determined here. Available data for numerous hexahalogenometalates containing monovalent cations

| Table 4. | Charge on | Hf $(q_M)$ | in  | HfX <sub>6</sub> <sup>2-</sup> | а |
|----------|-----------|------------|-----|--------------------------------|---|
|          |           | (4 M)      | *** | A AAA AQ                       |   |

| species                         | basis setllgeometry                                                                                           | fitted to MEP                             | Mulliken                                  | Löwdin                                        | Stone                                        | lit. (ref)             |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------|
| HfF6 <sup>2-</sup>              | HF/SBKJ+ddlHF/SBKJ                                                                                            | 2.725                                     | 3.118                                     | 1.750                                         | 1.366                                        | 2.641 (66)             |
| HfCl <sub>6</sub> 2−            | HF/SBKJ  HF/SBKJ<br>HF/SBKJ+d  HF/SBKJ+d<br>HF/SBKJ+dd  HF/SBKJ+dd<br>HF/SBKJ+dd  HF/SBKJ<br>HF/MIDI  HF/MIDI | 1.253<br>1.360<br>1.338<br>1.340<br>1.857 | 0.281<br>1.877<br>1.790<br>1.777<br>1.931 | -0.930<br>-0.210<br>-0.299<br>-0.303<br>1.596 | 2.705<br>-1.876<br>-1.808<br>-1.819<br>2.130 | 1.96 (9)<br>2.153 (66) |
| HfBr <sub>6</sub> <sup>2-</sup> | HF/SBKJ+ddl HF/SBKJ                                                                                           | 0.939                                     | -2.303                                    | -0.829                                        | 2.582                                        | 2.116 (66)             |
| HfI <sub>6</sub> <sup>2–</sup>  | HF/SBKJ+ddl HF/SBKJ                                                                                           | 0.452                                     | -2.763                                    | -1.592                                        | -17.708                                      | 1.726 (66)             |

<sup>a</sup> Charge on X  $(q_X)$  equals  $-(2 + q_M)/6$ .

 Table 5.
 Crystal Lattice Energies of Hexahalogenohafnates

 (kJ/mol)
 (kJ/mol)

|                  | this work (( | <ul> <li>electrostati</li> </ul> | c energy), <sup>o</sup> |                    |                  |
|------------------|--------------|----------------------------------|-------------------------|--------------------|------------------|
| compd            | HF/S         | BKJ+dd  HF/S                     | BKJ <sup>c</sup>        | lit.               |                  |
| no. <sup>a</sup> | MEP fit      | Mulliken                         | Löwdin                  | value <sup>d</sup> | ref <sup>e</sup> |
| 1a               | 2316         | 2437                             | 2044                    |                    |                  |
| 1b               | 2089         | 2166                             | 1974                    |                    |                  |
| 2                | 2071         | 2112                             | 1968                    |                    |                  |
| 3                | 1925         | 1958                             | 1841                    |                    |                  |
| 4a               | 3246         | 3298                             | 3100                    |                    |                  |
| 4b               | 3261         | 3346                             | 3045                    |                    |                  |
| 5                | 2838         | 2874                             | 2734                    |                    |                  |
| 6                | 3249         | 3333                             | 3034                    |                    |                  |
| 7a               | 3066         | 3111                             | 2938                    |                    |                  |
| 7b               | 3075         | 3151                             | 2880                    |                    |                  |
| 8a               | 3124         | 3171                             | 2990                    |                    |                  |
| 8b               | 3127         | 3206                             | 2925                    |                    |                  |
| 9a               | 3191         | 3240                             | 3050                    |                    |                  |
| 9b               | 3228         | 3311                             | 3016                    |                    |                  |
| 10a              | 3254         | 3306                             | 3107                    |                    |                  |
| 10b              | 3301         | 3389                             | 3081                    |                    |                  |
| 11               | 1347         | 1309                             | 1484                    | 1345               | 9                |
|                  |              |                                  |                         | 1404               | 15               |
| 12               | 1334         | 1302                             | 1447                    | 1315 (1225)        | 9                |
|                  |              |                                  |                         | 1333               | 15               |
| 13               | 2118         | 2121                             | 2125                    |                    |                  |
| 14               | 1004         | 1297                             | 551                     |                    |                  |
| 15               | 1309         | 1551                             | 1446                    | 1391               | 15               |
| 16               | 1293         | 1502                             | 1410                    | 1341               | 15               |
| 17               | 1475         | 1403                             | 1435                    | 1497               | 15               |
| 18               | 1233         | 1437                             | 1368                    | 1223               | 15               |
|                  |              |                                  |                         |                    |                  |

<sup>*a*</sup> For names and formulas of the compounds, see Table 1. <sup>*b*</sup> Atomic charges on monovalent and divalent metal cations were assumed to be +1 and +2, respectively. For Bi<sup>+</sup>Bi<sub>9</sub><sup>5+</sup>(HfCl<sub>6</sub>)<sub>3</sub>,<sup>53</sup> we assumed a net charge equal to +5/<sub>9</sub> on each of 9 Bi atoms and a net charge equal to +1 on 1 distinguished Bi atom. In compound 14 a net charge equal to +1 was assigned to the N atom. <sup>*c*</sup> Method of net atomic charge evaluation in HfX<sub>6</sub><sup>2-</sup>. <sup>*d*</sup> Value in parentheses indicates the calculated energy of Coulombic interactions. <sup>*e*</sup> Values referring to ref 15 are the mean from those listed there for a given compound (Table 2 in ref 15, under D) and considered to be reliable.

reveal that differences in the lattice energy between fluoro and chloro salts do not usually exceed  $300-400 \text{ kJ/mol.}^9$  Data in Table 5 demonstrate that differences in  $-E_{el}$  between relevant hexahalogenohafnates are roughly twice as high. A similar effect has been noted in the case of hexahalogenozirconates,<sup>67</sup> and it is most probably due to the relatively high separation of the charge between Hf and F atoms in HfF<sub>6</sub><sup>2-</sup> (Table 4), which causes an increase in the calculated energy of Coulombic interactions.

Data in Table 6 illustrate that the electrostatic part of the lattice energy depends markedly on the method of charge distribution evaluation. The most stable appear to be values based on the MEP net atomic charges. This is understandable, since the MEP net atomic charges are fitted so as to reproduce the electrostatic potential, which is the key quantity in the evaluation of the electrostatic part of the lattice energy.

Electrostatic lattice energies gradually decrease with the increase in size of the ionic fragments, which is in accordance with the well-known empirical rules.<sup>68</sup> This is clearly seen in Figure 2, where  $-E_{el}$  values show a decreasing tendency as regards the volume of a basic stoichiometric unit. The Coulombic energies further decrease with the increase in distance between interacting fragments (Table 1).

Electrostatic lattice energies of hexahalogenohafnates with doubly charged cations are generally much higher than those

 Table 6.
 Electrostatic Lattice Energies of Hexachlorohafnates for

 Various Charge Distributions in Ions (kJ/mol)

|                                                                                                                   |             | · ·             |                                   |                           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------|-----------------|-----------------------------------|---------------------------|--|--|--|
| method of charge distribution and geometry determinat                                                             |             |                 |                                   |                           |  |  |  |
| compd                                                                                                             | MEP fit     | Mulliken        | Löwdin                            | Stone                     |  |  |  |
|                                                                                                                   |             | HF/SBKJ         |                                   |                           |  |  |  |
| K₂HfCl <sub>6</sub>                                                                                               | 1353        | 1436            | 1530                              | 1219                      |  |  |  |
| Cs <sub>2</sub> HfCl <sub>6</sub>                                                                                 | 1339        | 1407            | 1486                              | 1228                      |  |  |  |
|                                                                                                                   |             | HF/SBKJ+        | d                                 |                           |  |  |  |
| K₂HfCl₀                                                                                                           | 1344        | 1297            | 1475                              | 1599                      |  |  |  |
| Cs <sub>2</sub> HfCl <sub>6</sub>                                                                                 | 1331        | 1292            | 1440                              | 1544                      |  |  |  |
|                                                                                                                   |             | HF/SBKJ+a       | id                                |                           |  |  |  |
| K <sub>2</sub> HfCl <sub>6</sub>                                                                                  | 1345        | 1305            | 1482                              | 1593                      |  |  |  |
| Cs <sub>2</sub> HfCl <sub>6</sub>                                                                                 | 1332        | 1299            | 1446                              | 1540                      |  |  |  |
|                                                                                                                   |             | HF/MIDI         |                                   |                           |  |  |  |
| K₂HfCl <sub>6</sub>                                                                                               | 1299        | 1292            | 1323                              | 1274                      |  |  |  |
| Cs <sub>2</sub> HfCl <sub>6</sub>                                                                                 | 1294        | 1288            | 1313                              | 1273                      |  |  |  |
| 3200<br>()ou/(ry)<br>2250<br>22700<br>22700<br>2250<br>2200<br>1950<br>1950<br>1450<br>(-)<br>1200<br>(-)<br>1200 | ک<br>م<br>م | ★ ★* * ●        |                                   | · · · · · · · · • • • · · |  |  |  |
| 100                                                                                                               | 150 200 2   | 250 300 350 400 | 450 500 550 $\sqrt{2}$ ( $^{3}$ ) | 600 650 700               |  |  |  |
|                                                                                                                   |             |                 | ·/ = x·· /                        |                           |  |  |  |

**Figure 2.** Coulombic energy versus volume of a basic stoichiometric unit (V/Z; for information see Table 1): ( $\diamond$ ) values for hexafluorohafnates of divalent cations; ( $\triangle$ ) values for hexafluorohafnates of monovalent cations; ( $\Rightarrow$ ) values for hexachlorohafnates; ( $_*$ ) values for hexabromohafnates; ( $_+$ ) values for hexachlorohafnates. The electrostatic energies are those given in the first column of Table 5 under "MEP fit" (mean value was taken if more than one was evaluated for a given compound; omitted also was value for compound 13).

of salts of monovalent cations. Analogous regularity, being the consequence of differences in net charges of interacting centers, has been noted for other systems.<sup>20,25-27</sup>

**Concluding Remarks.** The ab initio methods with effective core potentials and valence basis sets<sup>29,30</sup> appeared very useful in determining the geometry, thermochemical characteristics, and vibrational frequencies of gaseous hexahalogenohafnate ions. To reproduce the existing thermochemical data quantitatively, it was necessary, however, to include the electron correlation correction. To our knowledge, this is the first attempt to apply such an advanced approach to predict features of these complex species.

Heats of formation of  $HfX_6^{2-}$  (X = Cl, Br, I) (Table 2) and electrostatic lattice energies of hexahalogenohafnates determined theoretically (Table 5) are consistent, throughout the thermochemical cycle, with known heats of formation of gaseous cations and experimental heats of formation of crystalline salts.<sup>15</sup> This is an important finding which increases the reliability of our theoretical results.

The MEP net atomic charges determined in this work proved to be quite stable with respect to the choice of the one-electron basis set and seem adequate for the electrostatic lattice energy evaluations.<sup>69</sup> On the other hand, the net atomic charges resulting from various population analyses depend greatly on

<sup>(67)</sup> Vu Thanh, H.; Blazejowski, J. Thermochim. Acta 1994, 236, 263.

<sup>(68)</sup> Lister, M. W.; Nyburg, S. C.; Poyntz, R. B. J. Chem. Soc., Faraday Trans. 1 1974, 70, 685.

<sup>(69)</sup> Williams, D. E.; Yan, J. Adv. At. Mol. Phys. 1988, 23, 87.

## Hexahalogenohafnates

the basis sets used, are in some cases completely nonphysical, and may afford unrealistic lattice energy values.

Finally, the results obtained prove that the Ewald method is highly useful in examining lattice energetics of complex ionic substances. More advanced calculations would, undoubtedly, necessitate consideration of interactions other than electrostatic, namely repulsive and dispersive. This is not an easy task if one intends to approach it on a purely theoretical basis. However, even the simple method employed here affords quite a good description of energy of interactions in the solid phase. We hope that the combination of this approach with quantum chemistry methods will open new avenues for studying the reactivity of solids, and it is this problem which is currently the subject of our attention.

Acknowledgment. Financial support of this work from the Polish State Committee for Scientific Research (KBN) under Grant 2 0678 91 01 (Contract No. 1375/P3/92/02) and from the NSF under Grants CHE-8814765 and CHE-9116286 is grate-fully acknowledged.